# Lessons Learned Evaluating and Deploying Electronic Laboratory Notebooks at NIST

Joshua A. Taillon

PlantMicrobe Seminar

Tuesday, Sept 12, 2023 - 13:00 CEST



## NIST Disclaimer

Certain commercial equipment, instruments, materials, vendors, and software are identified in this talk for example purposes and to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Any opinions expressed are my own, and not a statement on behalf of the U.S. Government.

## Outline

- Introductions
- What is an ELN and why would I want one?
- Two case-studies:
  - Early forays into ELNs at NIST
  - Implementing a centralized ELN server system



## **About NIST**

- NIST is a U.S. federal research lab part of the U.S. Department of Commerce
  - The United States' National Metrology Institute (NMI)
  - Founded in 1901 as the National Bureau of Standards
  - Budget of around \$1.25B
- Primary mission is to advance innovation and industrial competitiveness
- We improve the nation's measurement system and develop standards
- NIST scientists and engineers are often the world's experts in specific measuring fields



## NIST at a Glance "Industry's National Laboratory"

|                                 | <b>3,400+</b><br>FEDERAL<br>EMPLOYEES                       |  | <b>5</b><br>NOBEL PRIZES                                       | 9 | 2 | <b>2 CAMPUSES</b><br>GAITHERSBURG, MD [HQ]<br>BOULDER, CO |
|---------------------------------|-------------------------------------------------------------|--|----------------------------------------------------------------|---|---|-----------------------------------------------------------|
|                                 | <b>3,500+</b><br>ASSOCIATES                                 |  | <b>10</b><br>COLLABORATIVE<br>INSTITUTES                       | 1 | 1 | <b>400+</b><br>BUSINESSES USING<br>NIST FACILITIES        |
| <b>JAJA</b><br>ManufacturingUSA | <b>16</b><br>NATL OFFICE FOR<br>MANUFACTURING<br>INSTITUTES |  | <b>51</b><br>MANUFACTURING<br>EXTENSION<br>PARTNERSHIP CENTERS |   |   | U.S. BALDRIGE<br>PERFORMANCE<br>EXCELLENCE PROGRAM        |

## **Calibrations, Reference, and Measurement Service**



Million-Pound Deadweight Machine

Credit: NIST

1,100 Standard Reference Material
(SRM) products
100+ Standard Reference Data (SRD) products
550 measurement services

Every year:
32,000 SRM units sold
13,000 calibrations and tests
650 accreditations of testing and calibrations of laboratories
20,000 SRD products downloaded or purchased

### MATERIAL MEASUREMENT LABORATORY 6



joshua.taillon@nist.gov

## **Strategic Priorities and National Impacts**



<u>Underway:</u> Technical investigation of cause of Champlain Towers collapse

joshua.taillon@nist.gov

Resulting in >40 significant changes to (inter)national building codes and design guidelines

## About NIST





joshua.taillon@nist.gov

## **NIST Laboratory Programs**





joshua.taillon@nist.gov

## About MML (Material Measurement Laboratory)

- MML is one of the six laboratory organizations within NIST
- MML performs applied measurement science and provides measurement services across many program areas:



## About MML (Material Measurement Laboratory)





joshua.taillon@nist.gov

## **Office of Data and Informatics (ODI)**

- Provides leadership and expertise to meet the data challenges of modern research
- ODI works with the research divisions to provide solutions and recommendations for FAIR data
- Staffed by data scientists that are also subject matter experts within the program areas of MML





## About Me!



## NIST

joshua.taillon@nist.gov

## An example of what I do at NIST

- Starting in 2019, we've worked with a multi-user electron microscopy facility at NIST to address data needs
- Built a microscopy LIMS mostly from scratch
  - Open-sourced at <u>https://github.com/usnistgov/NexusLIMS</u>
  - DOI: <u>10.18434/mds2-2355</u>
  - Described in detail in Microscopy and Microanalysis, 27 (3), 2021.
     pp. 511 - 527. <u>10.1017/S1431927621000222</u>





#### joshua.taillon@nist.gov

# What is an ELN and why would I want one?



joshua.taillon@nist.gov

# A great review of ELN history, considerations, and implementation suggestions (from Imperial College, London):

Stuart Higgins, Akemi Nogiwa-Valdez, & Molly Stevens.

"Considerations for implementing electronic laboratory notebooks in an academic research environment." *Nature Protocols* (Vol. 17, Issue 2, pp. 179–189), 2022.

https://doi.org/10.1038/s41596-021-00645-8

Many of my points today are informed by this groups' wonderful paper and their data published on Zenodo: <u>https://doi.org/10.5281/ZENODO.5012729</u>



## What is an ELN?

- Fundamentally, a digital version of the lab notes we are all used to taking
- Contains technical and general (meta)data about experiments
- Digitization at the time of creation, rather than *afterwards*



Fig. 1. Examples of early lab notebooks: Leonardo da Vinci's Vitruvian Man illustration, Thomas Jefferson's portable/re-writable ivory leaf note pad, Darwin's first rough sketch of the evolutionary tree concept, and his illustrations of Galapagos Finches.

Richard Gates, Mark McLean, & William Osborn, *J Res. NIST*, 120, 293 (2015). https://doi.org/10.6028/jres.120.018



## What sorts of ELNs are available?

Intended uses range from general-purpose note-taking to highly-specific tools for specialized applications



joshua.taillon@nist.gov

## What sorts of ELNs are available?

- Higgins *et al.* (2022) identified 96 active and 76 defunct ELN software packages
- Open-source and commercial systems are both available
- Average lifetime of 7 ± 4.4 years
  - Open-source:  $6 \pm 4.4$  years (n = 25)
  - Commercial:  $7 \pm 4.4$  years (n = 147)



## NIST

#### joshua.taillon@nist.gov

## Benefits of ELNs vs. physical notebooks (1)

#### **Electronic Notebooks**

- Information can be found and shared easily
- Entries can be accessible across project teams
- References to other entries can be dynamically linked
- Typically provide advances querying tools
- Easy "templating" of entries to control what information is recorded reproducibility!

joshua.taillon@nist.gov

#### **Physical Notebooks**

- Information is only accessible in one place (the actual notebook)
- Project teams have to share one single notebook in the lab
- References are one-time static entries typically by book and page numbers
- Cannot search other than manual browsing by chronology
- Requires custom printing or some other labor-intensive way to "template"

## Benefits of ELNs vs. physical notebooks (2)

#### **Electronic Notebooks**

- Easy to add non-text or computer-generated content to an entry
- Legibility does not depend on handwriting
- Legal record (for patents, etc.) on-demand via digital signatures/timestamping
- Backing up is a simple database backup
- If desired, open science/data is possible with many systems
- Easy compliance with open data mandates

joshua.taillon@nist.gov

#### **Physical Notebooks**

- Requires printing and gluing into a physical notebook to add photos, tables, etc.
- Researchers may not have ideal penmanship
- Legal record requires multiple sign-offs and secure physical storage of notebooks
- Takes a long time to scan whole notebooks
- This would be impossible with physical notebooks

## Drawbacks of ELNs vs. physical notebooks

#### **Electronic Notebooks**

- Adding entries requires opening computer, logging in, etc. – PPE can make this harder
- Inputting drawing, sketches, or equations can be difficult
- Potential distraction from requiring a computing device
- Potential (more so with proprietary applications) for lock-in or inaccessible data

#### **Physical Notebooks**

- Writing in a paper notebook is trivial
- Drawing is as easy as writing
- Single-use device good for focusing on the tasks at hand
- A paper notebook has no vendor lock-in



#### joshua.taillon@nist.gov

# Early pilots of ELNs at NIST



joshua.taillon@nist.gov

## Initial effort for ELNs within MML

- Started as a "wish list" in 2013 by a microfabrication research group
- Formalized into a list of desired capabilities
- Evaluated both various hardware and software platforms:
  - Tablet computers (Microsoft Surface)
  - Ultrabook laptops

- Microsoft OneNote
- Evernote

- Hybrid detachable computers
- Documented experience in a 2015 manuscript:

Richard Gates, Mark McLean, & William Osborn, J Res. NIST, 120, 293 (2015). https://doi.org/10.6028/jres.120.018



## Guiding concepts identified for ELN at NIST

| Guiding Concept |               | Capability                                                     | Details                                                                                                  |
|-----------------|---------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                 | Portable      | Take with you anywhere                                         | <ul> <li>Lightweight hardware</li> <li>Long battery life</li> </ul>                                      |
|                 | Intuitive     | Touchscreen hardware. Familiar OS<br>and application interface | <ul> <li>Graphical interface OS</li> <li>Notebooks/Folders/Pages format</li> </ul>                       |
|                 | Clean         | Cleanroom compatible                                           | Easily wiped down for cleanroom entry                                                                    |
|                 | Creative      | Flexible and easy to use                                       | <ul> <li>Multiple formats:</li> <li>Text, images, audio, video, handwriting, etc.</li> </ul>             |
|                 | Collaborative | Resource sharing                                               | • Variable control for "circle of trust"                                                                 |
|                 | Live          | Information available anywhere at anytime                      | Wireless and Cloud                                                                                       |
|                 | Smart         | Features not normally associated with<br>a lab notebook        | • Camera, microphone, communications, sensors, web access, tagging, and searchable indexing              |
|                 | Secure        | NIST IT security constraints                                   | <ul> <li>Password protection, disk encryption, firewall, domain<br/>authentication, antivirus</li> </ul> |
|                 |               |                                                                | Adapted from: Richard Gates Mark McLean & William Osborn, I Res. NIST, 120, 293 (2015)                   |



## **The Pilot Solution**

## Microsoft OneNote on Microsoft Surface Pro computer:



Fig. 3. OneNote organizational layout of the nested Notebook/Section/Page hierarchy with the contents of the selected page displayed in the center.



Fig. 4. Typical experiment documentation capability of the SELN combining the rear facing camera and hand annotation.



#### joshua.taillon@nist.gov

## State of ELNs at NIST in 2022

- Rolled out this framework to ~100 researchers with demo notebooks and training
- No absolute numbers to date, but uptake estimated in the 5 10 % range
- OneNote solution works very well for those that use it, but has some key limitations....
  - Free-form notes do not allow "advanced" structuring of data, or querying that data
  - Notes are effectively "locked in" to OneNote format
  - Difficult to built "add-ons" for automated data workflows
  - Desktop application is not cross-platform (web-based version available, but limited)



# Implementing a centralized ELN system



joshua.taillon@nist.gov

## **Revisiting Modern ELNs for NIST Researchers**

| Initial Discussions                                         | 5                                                                                             | Initial Use Cases Iden                                                    | tified                                                                                            |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--|
| Limitations of One<br>Researchers want<br>"database" withou | eNote identified.<br>an easy-to-use<br>t a formal DB                                          | Two research groups in<br>Biosystems and Bioma<br>agree to be "guinea pig | n MML's<br>aterials Division<br>gs"                                                               |  |
| •                                                           | Sept. 2022                                                                                    | •                                                                         | 2023                                                                                              |  |
| Prior to<br>July 2022                                       | •                                                                                             | Oct. 2022                                                                 | •                                                                                                 |  |
|                                                             | Presentation about eLa<br>LIMS COI                                                            | abFTW to                                                                  | Pilot Implementation Underway                                                                     |  |
|                                                             | <u>Clemens Mangler</u> (Univ<br>Vienna) presents to the<br>COI about his laborator<br>eLabFTW | versity of<br>MML LIMS<br>ry's use of                                     | eLabF I W deployed on local<br>infrastructure, iteration on templates<br>and database types, etc. |  |

## NIST

#### joshua.taillon@nist.gov

## **Updated Requirements**

- The OneNote solution was too general, but domain-specific tools do not allow interconnection and are a heavy administrative burden
- The "ideal" ELN thus sits in the center of the "generic specific" spectrum
- In addition to everything from the earlier pilot, an ideal ELN must *also provide*:
  - Representation of arbitrary data types (samples, instruments, etc.) and a straightforward way for researchers (not data scientists) to create these
  - Linking of note entries to build a "knowledge graph"
  - Support for both "free text" notes, diagrams, etc., as well as structured metadata
  - Application Programming Interface (API) for advanced use cases



## **Trying out ELabFTW at NIST**

- After discussions with existing users, a pilot was launched to evaluate ELabFTW
- What is ELabFTW?
  - A web-based, self-hosted electronic laboratory notebook platform
  - At its core, tracks experiments and manages lab information for many teams with a flexible database model

#### **Reminder Disclaimer:**

Certain commercial equipment, instruments, materials, vendors, and software are identified in this talk for example purposes and to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Any opinions expressed are my own, and not a statement on behalf of the U.S. Government.



https://elabftw.net



#### joshua.taillon@nist.gov

## **ELabFTW** Capabilities

- Secure, cross-platform, responsive design from any device
- Can handle independent "teams" (more on this later)
- Flexible and linkable research notes (more on this later)
- Simple to maintain database of "items" or "resources"
- Completely API-accessible for advanced use cases
- Enterprise-integrated login (SAML)



## How does it work?

- Users are separated into one or more "teams"
- Users can create "experiments" based off templates
  - "Experiments" correlate to pages in a notebook, but everything in the app is linkable
  - Much like OneNote: add arbitrary text, attach files, drag-and-drop images, scribble drawings, etc.
  - Templates can be individual to a user, or shared among a team



## How does it work? (continued)

- The "database" or "inventory" provides a flexible but powerful way to represent your particular data model
  - Represent samples, people, instruments, procedures, etc.
  - There are no limitations on types, so any model is possible
- Types are unique to each individual team
  - This means different research groups can have different models



- The NIST Microbial Team characterizes many different microbes with multiple methods
- They need to:
  - Document characterizations
  - Synthesize results for decision making
  - Provide characterization results to external stakeholders via another API-enabled web tool
  - Have many staff using multiple shared protocols for experiments



## **Experimental workflows**

- Flow cytometry (multistage):
  - $\circ$  1/3 Sample prep
  - 2/3 Cytometry
  - 3/3 Analysis
- Sample handling
- CFU (colony forming unit) measurement

## Database Items:

- Instruments
- Staff
- Microbial Strains
- Manufactured Materials
- Probes
- "Study ID"
- Manufacturers
- and more...

## **Experimental workflows**

| Example Flow          | <pre>/ Cytometry Experiment</pre> |
|-----------------------|-----------------------------------|
| Next step: Removing   | from incubator                    |
| 🗆 🖋 🔁 RUNNING 🏥 2     | 2023-05-23                        |
| flow cytometry w      | vorkflow                          |
| 2/3 flow cytometry    | experiment                        |
|                       |                                   |
| Example FC S          | ample Prep                        |
| Next step: Adding Rel | hydration Buffers                 |
|                       | 2023-05-23                        |
| 1/3 Sample prep       | flow cytometry workflow           |

## **Database Items:**





#### joshua.taillon@nist.gov

## Creating a new experiment from template

|                                                                         | 0+                     | de de de de        | OVisib         |                                                  | Can write 💷                 |   |
|-------------------------------------------------------------------------|------------------------|--------------------|----------------|--------------------------------------------------|-----------------------------|---|
| Running                                                                 | -                      |                    | All the tea    | ams I am part of                                 | Only me and admins          |   |
| itle                                                                    |                        |                    |                |                                                  |                             |   |
| Flow Cytometr                                                           | y 3 - Analysis         |                    |                |                                                  |                             |   |
| Tags                                                                    |                        |                    |                |                                                  |                             |   |
| low cytometry                                                           | workflow 3/3 cytometer | er result analysis |                |                                                  |                             |   |
| Add a tag                                                               |                        |                    |                |                                                  |                             |   |
|                                                                         |                        |                    |                |                                                  |                             |   |
| File Edit View                                                          | Insert Format Tools T  | able               |                |                                                  |                             |   |
| 6 ∂ Head                                                                | ding 2 🗸 20px          | ✓ B I U -S         |                | $X^2 X_2 \stackrel{:}{:}= \vee \stackrel{:}{:}=$ | ✓ Ξ Ξ <u>A</u> ∨ <u>X</u> ∨ |   |
|                                                                         | 8 1= V                 |                    |                |                                                  |                             |   |
|                                                                         | ·                      |                    |                |                                                  |                             |   |
| CYTOMETE                                                                | R RESULT ANALYS        | SIS                |                |                                                  |                             |   |
| Run Cytom                                                               | eter QC and Store C    | C Files            |                |                                                  |                             |   |
|                                                                         |                        |                    |                |                                                  |                             |   |
| -                                                                       | Data                   |                    |                |                                                  |                             |   |
| Experiment                                                              |                        |                    |                |                                                  |                             |   |
| Experiment                                                              |                        |                    |                |                                                  |                             | - |
| Date<br>nstrument<br>Operator                                           |                        |                    |                |                                                  |                             |   |
| Experiment<br>Date<br>Instrument<br>Operator                            | Details                |                    |                |                                                  |                             |   |
| Experiment<br>Date<br>Instrument<br>Operator<br>Instrument              | Details                |                    |                |                                                  |                             |   |
| Experiment<br>Date<br>Instrument<br>Operator<br>Instrument<br>Sample    | Details<br>Run Speed   | Run Duration       | Run Start Time | Lasers Used                                      | Laser Setting               |   |
| Experiment Date Instrument Operator  nstrument Sample Sample 1 Sample 2 | Details<br>Run Speed   | Run Duration       | Run Start Time | Lasers Used                                      | Laser Setting               |   |

## Workflow tracking and linking

#### Steps

| \$ | Ô      |    | Add link to STAGE2 completed in 1 hour | Ø |
|----|--------|----|----------------------------------------|---|
| ŧ  | Ô      |    | Run Cytometer completed in 1 hour      | 0 |
| \$ | Î      |    | Run Cytometer QC and Store QC Files    | Ø |
| ŧ  | Ô      |    | Instrument Details                     | 0 |
| ¢  | Î      |    | Clean up                               | Ø |
| \$ | Ô      |    | Results, Conclusion & Discussion       | Ø |
| Ad | d a st | ер |                                        |   |

Contract Contract

Add a link to an experiment Any author -

🖉 RUNNING - Example Flow Cytometry Experiment 🛛 🖶 - 🏠 🛅

#### Contract Con

| Add a link | from the database | Any category 👻 |
|------------|-------------------|----------------|
|            | IMENT -           | •±-51          |
| @ PERSO    | N -               | 0₩-50          |
| @ PROBE    | -                 | •±+50          |

## NIST

#### joshua.taillon@nist.gov

## Creating new items with structured metadata:



| Genus                                |          |
|--------------------------------------|----------|
| Strain                               |          |
| species                              |          |
|                                      |          |
| Gram Strain                          |          |
| Positive O Negative                  |          |
| Growth Media                         |          |
| The medium this strain was grown in  |          |
| THA                                  | ·        |
| THR                                  |          |
| LB                                   |          |
|                                      | <b>*</b> |
| Strain Number                        |          |
|                                      |          |
| Biosafety Level                      |          |
| ●1 ○2                                |          |
| Alternative Name                     |          |
|                                      |          |
| Growth Atmosphere                    |          |
| Aerobic                              | *        |
| Anaerobic                            |          |
| Microaerophilic/Capnophilic (5% CO2) | •        |
| Additional Information               |          |
|                                      |          |
| Original Isolation Source            |          |
|                                      |          |
|                                      |          |



#### joshua.taillon@nist.gov

# Automated ingest of existing spreadsheets via API:

| 1  | A             | В             | С           | D             | E                | F                         | G            |
|----|---------------|---------------|-------------|---------------|------------------|---------------------------|--------------|
| 1  | Strain number | Genus         | species     | Strain        | Alternative_name | Original isolation source | Growth Media |
| 2  | N             | Escherichia   | coli        | 08            | 7.1994           |                           | THA/THB      |
| 3  | N             | Escherichia   | coli        | EHEC 011:H8   | DEC8B            |                           | LB/BHI/TSA   |
| 4  | N             | Escherichia   | coli        | STEC x03:NM   | 90-1787          |                           | LB/BHI/TSA   |
| 5  | N             | Escherichia   | coli        | UPEC 06:H31   | 536              |                           | LB/BHI/TSA   |
| 6  | N             | Escherichia   | coli        | ETEC          |                  |                           | LB/BHI/TSA   |
| 7  | N             | Escherichia   | coli        | ETEC          | CG146            |                           | LB/BHI/TSA   |
| 8  | N             | Escherichia   | coli        | EHEC 0157:H7  | 33               |                           | LB/BHI/TSA   |
| 9  | N             | Escherichia   | coli        | EPEC 0127:H6  | E2348/69         |                           | LB/BHI/TSA   |
| 10 | N             | Escherichia   | coli        | EHEC O103:H2  | SJ10             |                           | LB/BHI/TSA   |
| 11 | N             | Escherichia   | coli        | EHEC 0121:H19 | SJ18             |                           | LB/BHI/TSA   |
| 12 | N             | Brenneria     | nigrifluens |               | SAFE118/ 1391    |                           | TSA          |
| 13 | N             | Delftia       | acidovorans |               | B-769            |                           | TSA          |
| 14 | N             | Dienococcus   | radiodurans | R1            |                  |                           | TGY/R2A/TSA  |
| 15 | N             | Lactobacillus | rhamnosus   |               |                  |                           | MRS/Blood    |
| 16 | N             | Bacteroides   | fragilis    | B-23622       |                  |                           | Blood        |
| 17 |               |               |             |               |                  |                           |              |

#### .

def create\_item\_from\_row(row, category\_id):

#### 0.0.0

Using the ELabFTW API, create an item in the database with a given set of metadata values specified by a row of the provided CSV file. This will require three steps: (1) a POST request to create the new item and get it's ID number, (2) a GET request to obtain the default metadata structure (as specified in the item type definition), and (3) a PATCH request to update the title and metadata of the newly created item according to what is provided in the metadata ``row`` value.

This method does not need to return anything, since it only exists to create new items.

#### Parameters

-----

row : dict

A dictionary representing a row of the CSV file (read by ``csvreader``) that contains the metadata to be inserted in this item

category\_id : int

The category (type) of item to create, as an integer. e.g. item type "Microbial Strain" would be ``32``

```
.....
```

# post request to create a new item and get its ID number

```
res = requests.post(
```

f"{API\_HOST\_URL}/items",

```
json={"category_id": category_id},
```

```
headers=headers,
verify=False
```

verity=Fa

item\_id= int(res.headers["Location"].split("/")[-1])



#### joshua.taillon@nist.gov

- NIST Cell Systems Science Group
- Cells are self-replicating and present unique measurement challenges
- They need to:
  - Demonstrate quality in cell expansion process
  - Log of process control measurements and specifications
  - Provide results to external stakeholders via another API-enabled web tool



## **Experimental workflows**

- Expansion protocol:
  - Start
  - $\circ$  Feed
  - Monitor
  - Passage
  - Transfer
  - Stop
- Each protocol needs its own interface (template) so consistent information is collected at every stage

## Database Items:

- Instrument
- Operator
- Mammalian Cell
- Container
- Medium
- Serum
- Reagent
- and more...

#### joshua.taillon@nist.gov

## **Experimental workflows**

| periments templates | •                                                                                                           | Create                                                                                |                                                                                       |
|---------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| ART                 |                                                                                                             |                                                                                       |                                                                                       |
| ED                  |                                                                                                             |                                                                                       |                                                                                       |
| ONITOR              |                                                                                                             |                                                                                       |                                                                                       |
| SSAGE               |                                                                                                             |                                                                                       |                                                                                       |
| ANSFER              |                                                                                                             |                                                                                       |                                                                                       |
| OP                  |                                                                                                             |                                                                                       |                                                                                       |
| Manage template     | s                                                                                                           |                                                                                       |                                                                                       |
| Import from file    |                                                                                                             |                                                                                       |                                                                                       |
|                     | periments templates<br>ART<br>ED<br>ONITOR<br>SSAGE<br>CANSFER<br>OP<br>Manage template<br>Import from file | ART<br>ED<br>ONITOR<br>SSAGE<br>CANSFER<br>OP<br>Manage templates<br>Import from file | ART<br>ED<br>ONITOR<br>SSAGE<br>CANSFER<br>OP<br>Manage templates<br>Import from file |

## **Database Items:**

| Serum run                               |
|-----------------------------------------|
| Container run<br>□ 2  CULTURECONTAINER  |
| Protocol run<br>□ ♥ ● expansionprotocol |
| MycoPlasma                              |
| BDAcurri                                |
| ViCell                                  |



#### joshua.taillon@nist.gov

### Heavy use of structured metadata to represent their data model:

| IDENTITY         |          | CompleteMediumFormulaCo           |
|------------------|----------|-----------------------------------|
| IntakeDate       | ŵ        | 90M-10S-GlutMax-10mM/             |
| Today 04/25/2023 |          | CellCultureType                   |
| NameCode *       |          | Suspension                        |
| Expansion        |          | CellOriginType                    |
|                  |          | Vial                              |
| Jescription      | <b>a</b> | <ul> <li>MISCELLANEOUS</li> </ul> |
| cell protocol v2 |          | LocalFileName                     |
| UniqueCode       | ū        | Cell Protocols                    |
| V2               |          | StandardizedFileName              |

| CULTURE INFO              |          |
|---------------------------|----------|
| CompleteMediumFormulaCode | Ô        |
| 90M-10S-GlutMax-10mMAnti  |          |
| CellCultureType           | <b>@</b> |
| Suspension                | •        |
| CellOriginType            | <u></u>  |
| Vial                      | ¥        |
| MISCELLANEOUS             |          |
| LocalFileName             | â        |
| Cell Protocols V2.docx    |          |
| StandardizedFileName      | <b>D</b> |
|                           |          |
|                           |          |



## Pilot management model

- ODI administers single instance for MML
- A group, division, or project can register a "team"
- ODI trains a one or more representative(s) on team administration and basic data modeling/workflows
- Division/project level admins administer their own users



# Conclusions



joshua.taillon@nist.gov

## Where are we now?

- "Pilot" use cases are just starting real data collection after initial model development during the summer
- Received IT security clearance to run on NIST's internal network
- Currently working to train users and receive feedback on initial operations



## **Lessons learned**

- There is no "one-size-fits" all solution in multi-disciplinary research environments
- The ease with which data models can be customized to individual or shared workflows is very important
- Specific is better than generic, but not too specific!
- Successful implementation of an ELN requires both technical and research champions



# Thank you for your attention! Questions?

joshua.taillon@nist.gov https://orcid.org/0000-0002-5185-4503



joshua.taillon@nist.gov

- NexusLIMS is fairly mature, but has no editing capabilities and zero ability to capture information from a user during an experiment
- User workflows are extremely varied and tool/methodology specific
- Investigating eLab as more general note-taking tool and for linkages to auto-generated research records



#### More use of free-text notes:

| Owned by                                                                                                                                                                       |                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Experiment was timestamped by     on 2023-04-26 at 11:43:10                                                                                                                    |                                         |
| C 🖬 🛱 🛣                                                                                                                                                                        |                                         |
| Buccess Started on 2023-04-24<br>NexusLIMS-WIPP project                                                                                                                        | OVisibility                             |
| Sample(s)<br>Old MRAM sample from<br>Old nanodot samples on Hall crosses<br>Sample - XYZ<br>Experiment Plan                                                                    | Holder(s) in use                        |
| EXPERIMENT FIAN<br>Take high, medium low mag images in SE mode for these two samples. The images will re recorded by NexusLIMS, ITL team will try<br>to do image registration. | Notable microscope/peripheral settings: |



#### joshua.taillon@nist.gov

# **Database items of Instruments, Holders, Detectors, etc.** (eventually with PIDs)





joshua.taillon@nist.gov

### **Representation of auto-generated NexusLIMS Records** Uploaded via API at same time records are created in CDCS





Interactive notes can be linked to eLab record, which links to NexusLIMS CDCS for full context

## NIST

#### joshua.taillon@nist.gov