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A B S T R A C T

Electron tomography is a powerful tool for the three-dimensional characterization of materials at the nano- and 
atomic-scales. A typical workflow for tomography involves several pre-processing steps that may include spatial 
binning, image registration, and tilt-axis alignment depending upon the nature of the acquired data. Here we 
describe the capabilities of a new, open-source software package named ETSpy that builds upon the widely used 
HyperSpy package. The basic usage of the software and some specific applications are presented.

1. Introduction

Electron tomography (ET) is a process whereby a three-dimensional 
(3D) representation of an object is reconstructed from a series of two- 
dimensional (2D) projection images in the transmission electron mi-
croscope (Rosier and Klug, 1968; Crowther and DeRosier, 1970; Frank, 
2006). ET has proven to be a valuable technique in both biological 
(McEwen and Marko, 2001; Lučić et al., 2005; Downing et al., 2007; Gan 
and Jensen, 2012; Turk and Baumeister, 2020; Young and Villa, 2023) 
and materials sciences (Midgley and Weyland, 2003; Weyland and 
Midgley, 2004; Ziese et al., 2004; Kübel, et al., 2005; Midgley and 
Dunin-Borkowski, 2009; Muller and Ercius, 2009; Grenier et al., 2014). 
Recent advances have even pushed the spatial resolution to the 
atomic-scale (Scott et al., 2012; Chen et al., 2013; Xu et al., 2015; Miao 
et al., 2016; Yang et al., 2017; Zhang et al.,2018; Wang et al., 2020a,b;
Yang et al., 2021; Pelz et al., 2022) and have integrated spectroscopic 
methods such as energy dispersive x-ray (EDX) and electron energy-loss 
(EELS) spectroscopies with the more traditional brightfield or annular 
dark-field imaging techniques (Möbus et al., 2003; Gass et al., 2006;
Yaguchi et al., 2008; Genc et al., 2013; Goris et al., 2013; Bals et al., 
2014; Haberfehlner et al., 2014; Pfannmöller et al., 2015; Goris et al., 
2016; Zanaga et al., 2016; Zhong et al., 2017, 2018; Bender et al., 2019;
Baumann et al., 2020; Han et al., 2021). Further improvements in 
reconstruction resolution and quality have been demonstrated using a 
multi-modal approach combinging imaging and spectral imaging during 

the tomographic acqusition (Schwartz et al., 2022b; Schwartz et al., 
2024).

Though the technique is quite flexible and has many modalities, the 
basic concept remains the same throughout. In ET, we seek to recover an 
image of an object, fx(y,z), from a series of projections collected over a 
range of angles, Px(θ,y). This can be accomplished in a number of ways, 
but often begins with the inverse Radon transform (RT)(Radon, 1917) 
such that: 

fˆn(y,z) = RT (Pn(θ,y))                                                                           

θ ∈ θ1,θ2,θ3,…,θk                                                                                

0 ≤ n < nx                                                                                     (1)

where:
θn: tilt angle for each projection image
k: number of projection images
nx: number pixels in the horizontal image axis, x
y: vertical image axis

For the purposes of this paper and the software package which it 
describes, it is assumed that the tilt axis of the dataset is horizontal (i.e. 
parallel to the x direction of the images, see Fig. 1). Note that in Eq. 1, 
the reconstructed image is given as fˆrather than the true object, f. This is 
a result of the finite tilt increment between projections, artifacts arising 
from data processing errors, the noise content of the projection data, 
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and, in many cases, a hardware/specimen limit on the portion of the full 
tilt range (0 to π radians) that is accessible.

In practice, the workflow begins with the collection of projection 
images over a range of specimen tilt orientations. At each step, the stage 
goniometer is advanced by a given tilt increment, one or more new 
images are collected, and the data is stored for offline processing. If 
necessary, the stage and/or beam shift can be adjusted after tilting in 
order to account for mechanical movement of the specimen during 
tilting and the image can also be refocused. The entire process of tilting, 
adjusting shifts, focusing, and collecting data can be fully automated, 
semi-automated, or fully manual. The degree of user interaction that is 
necessary is typically set by the spatial resolution requirements of the 
analysis with higher resolution calling for more intervention.

Next, several pre-processing steps can be performed on as-needed 
basis. The full dataset may need to be truncated with some images 
being discarded due to image quality issues or because the specimen had 
shifted during acquisition. Often, the dataset will be down-sampled in 
the spatial domain both to decrease computational requirements in the 
subsequent steps or to reduce noise. Image filters may also be applied 
during pre-processing in order to remove noise or image artifacts (e.g. 
cosmic rays, camera defects, etc.). Prior to reconstruction, the pro-
jections must be spatially aligned to a common coordinate system and 
tilt axis. The former involves the calculation and application of a 
transformation matrix for each projection in the series, while the latter is 
accomplished via a global rotation and/or shift of the entire image stack. 
Failure to either properly register the individual projections to each 
other or to align the stack to the tilt axis will result in artifacts of varying 
severity and appearance in the reconstructed volume.

Once pre-processing is complete, the stack is provided as input to a 
reconstruction algorithm. The goal of the reconstruction process is to 
convert the input slices along x or the sinograms (Px(θ,y)) from the tilt 
series to two-dimensional images of the original object (fx(y,z)). These 
algorithms fit into two broad classes: analytical methods and iterative 
methods. The most commonly used analytical method is filtered- 
backprojection (FBP) which applies a weighting filter to the pro-
jections prior to calculating the inverse Radon transform of the projec-
tion data (Ramachandran and Lakshminarayanan, 1971). The filter is 
designed to counteract the blurring effect which results from the finite 

tilt increment used in acquiring the tilt series data and the nonuniform 
sampling of the frequency domain this produces. Iterative methods seek 
to improve upon an initial reconstruction by re-projecting it and 
comparing to the actual projection data. The two most widely used 
iterative methods are the simultaneous iterative reconstruction tech-
nique (SIRT, (Gilbert, 1972)) and the simultaneous algebraic recon-
struction technique (SART, (Andersen and Kak, 1984)). In both cases, 
the goal is to minimize the difference between the measured projection 
data and the reprojection of the current reconstruction. In SIRT, the 
update step is carried out on the full reconstructed image by forward 
projecting it and comparing to the full input projection data. By contrast, 
in SART the update step is performed sequentially by forward projecting 
the current reconstruction estimate for each projection angle and 
comparing to the input projection data for just that angle. Many other 
reconstruction methods have been developed more recently for specific 
applications. These include (among others): (i) the discrete algebraic 
reconstruction technique (DART, (Batenburg and Sijbers, 2011)) where 
the intensity levels in the reconstructed image are iteratively assigned to 
one of several distinct grayscale values provided by the analyst, (ii) 
total-variation minimization (TVmin, (Rudin et al., 1992)) which is an 
iterative method that includes a regularization step to promote 
smoothness within distinct regions of the image, and (iii) compressed 
sensing electron tomography (CSET, (Saghi et al., 2011)) which pro-
duces high-fidelity reconstructions while remaining robust to under-
sampling conditions in both the spatial and tilt-axis domains.

Finally, the reconstructed volume must be analyzed in some fashion 
depending on the nature of the features or properties being measured. In 
some cases, simply visualizing the 3D volume is sufficient to reveal the 
necessary detail and isosurface generation or volumetric rendering can 
meet these needs. More often, some features such as interfacial area or 
the volume fraction of a given phase needs to be measured. To do this, 
the reconstructed data is typically segmented so each voxel of the 
tomogram is assigned a discrete label, allowing for the quantification of 
various features.

Many software packages, both commercial and open-source, are 
available for handling some or all of these steps; from data acquisition to 
preprocessing and on to alignment and eventually reconstruction. It is 
beyond the scope of this paper to discuss all of these, but, limiting our 

Fig. 1. Diagram of the axes convention used in this paper for electron tomography data. The object is rotated about the tilt axis which is parallel to the horizontal axis 
of the image.
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focus to just the non-commercial open source options, the most widely 
used package for data acquisition is SerialEM (Mastronarde, 2005, 
2024b) which can be paired with the IMOD package (Kremer et al., 
1996; Mastronarde, 2024a) for preprocessing, alignment, and recon-
struction. Another widely used open-source tool for tomography data 
processing and visualization is tomviz (Schwartz et al., 2022a; tomviz, 
2024) which offers a fully developed UI with intuitive workflow options 
for all stages of the tomography pipeline. Another well-developed 
open-source option is TomoPy ( Gürsoy et al., 2014) which originated 
for X-ray based tomography work but is readily adapted to ET as well. 
Finally, a number of plugins for ImageJ, too many to list here, are 
available, each of which handles some portion of the tomography 
workflow.

In this paper, we describe the ETSpy package (Herzing, 2024) which 
is an ET-focused extension of HyperSpy (de la Peña, et al., 2017; de la 
Peña et al., 2024), a popular open-source, Python-based package for the 
processing of multidimensional data, including electron microscopy and 
spectroscopy data. ETSpy offers a compact, command line driven 
interface for pre-processing, alignment, reconstruction, and basic 2D 
visualization of ET data. Additionally, when used through the Jupyter 
Notebook or Jupyter Lab interfaces (Beg et al., 2021), ETSpy promotes 
scientific reproducibility through automatic documentation of all pro-
cessing steps used to achieve a result. These Jupyter documents can also 
be easily annotated and shared with collaborators or included alongside 
any resulting publication. As a HyperSpy extension, ETSpy offers a 
number of attractive options in terms of the ET workflow. Since the 
parent package already offers high quality widgets for plotting and 
visualization of higher dimensional datasets and has embedded a large 
number of relevant data processing methods, ETSpy can draw on these 
existing capabilities and the efforts of the large network of active 
HyperSpy users and developers. In this way, ETSpy joins the growing 
number of HyperSpy extensions available to analysts all over the world, 
which as of this publication includes tools for X-ray energy dispersive 
and electron energy loss spectroscopies (eXSpy, de la Peña et al., 2024), 
diffraction and 4D-STEM (pyxem, Johnstone et al., 2024), EBSD (kiku-
chipy, Ånes et al., 2024), cathodoluminescence (lumiSpy, Lähnemann 
et al., 2023), atomic resolution imaging (Atomap, Nord et al., 2017), 
holography (holoSpy, Prestat et al., 2024a), and particle analysis (Par-
ticleSpy, Slater et al., 2021).

2. Test data

Two test datasets are bundled with ETSpy. These include a simulated 
tilt series of a catalyst particle consisting of a sphere with small particles 
of varying size present on the surface and an experimental STEM- 
HAADF image series collected from a needle-shaped sample from NIST 
SRM-2135c (NIST, 1999). The latter consists of a silicon substrate with 
alternating layers of nickel and chromium deposited on the free surface. 
These datasets can be loaded using the following code: 

import etspy.api as etspy

from etspy import datasets as ds

s =ds.get_needle_data() # loads experimental test 

data

s2 =ds.get_catalyst_data() # loads simulated cata-

lyst data

The experimental data is provided in two versions: one which has not 
been aligned (as it was collected) and another that has already been 
aligned. The aligned parameter of ds.get_needle_data() controls the 
version that is loaded (the default is non-aligned): 

s = ds.get_needle_data()

s_aligned = ds.get_needle_data(aligned=True)

The model catalyst data (accessed via ds.get_catalyst_data()) is fully 
aligned but misalignment can be applied as the data is read into memory 
in order to simulate real experimental data. The provided Jupyter 
notebook uses these datasets to demonstrate the rest of the ETSpy 
functionality.

3. Signal classes

Two new Python classes are defined in ETSpy, each of which is a 
child of HyperSpy’s Signal2D parent class. The first of these new classes 
is the TomoStack, which contains the tilt series data, metadata, and all of 
the methods used for data manipulation, alignment, and reconstruction. 
As in the Signal2D parent class, the TomoStack has navigation axes and 
signal axes. For an ET image tilt series, the signal axes will be the x and y 
image axes, while the navigation axis will be the θ tilt angle dimension. 
The data can be visualized readily using the HyperSpy plot functionality 
and, when using the Jupyter widget backend for matplotlib (Hunter, 
2007), the stack can be interactively viewed in the Jupyter interface as a 
function of tilt angle.

Relevant metadata for tomographic processing is included in a new 
node of the standard HyperSpy metadata structure. This metadata can 
be accessed from the Jupyter command line by typing: 

s.metadata.Tomography

and it includes the projection angles, a boolean indicator as to whether 
or not the data has been previously cropped, the angle of the tilt axis 
relative to the horizontal axis of the images, and any applied global 
shifts. The projection angles for the tilt series and the translational shifts 
of each image are stored as attributes of the TomoStack class as 
HyperSpy signals. They can be directly accessed as s.tilts and s.shifts, 
respectively. To view the underlying data values for these signals, the 
following commands can be used: 

s.tilts.data

s.shifts.data

There is an important distinction between the projection angles stored in 
s.tilts and those referenced in the HyperSpy AxesManager: The values 
stored in s.tilts are the “true” values used for several alignment processes 
as well as the reconstruction. The values stored in the HyperSpy Axes-
Manager (which assume a uniform scale between tilts) are used for 
visualization purposes and should be referenced with caution, as they 
often may differ from the actual projection angles stored in s.tilts. This 
distinction allows for arbitrary projections to be removed from a 
TomoStack via use of the s.remove_projections() method, which is not 
possible with HyperSpy’s standard axes-handling tools. Future versions 
of ETSpy may make use of HyperSpy’s ”non-uniform data axis” feature, 
where the axis values are not evenly spaced, but HyperSpy’s current 
implementation imposes limitations on other functionality needed for 
tomographic analysis (such as spatial binning). At the present state, 
ETSpy will continue to store and use the projection angles in the s.tilts 
attribute.

In addition to the TomoStack, there is a second class called a Rec-
Stack which is used to handle the reconstructed data. At the time of 
publication, this class mostly provides a way to distinguish between 
objects containing tilt series data and those containing reconstructed 
data. It also includes a basic 3D slice plotting function to view images of 
reconstructed data along the Z-X, Y-X, and Z-Y directions. Additional 
functionality will be added to this class in the future.

4. Data I/O

ETSpy contains a load function for reading data into memory. It can 
be used in the following ways: 
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s = etspy.load("filename.ext")

image_series = ["image1.ext", "image2.ext", "image3. 

ext"]

s2 = etspy.load(image_series)

Hyperspy (de la Peña et al., 2024) and the associated RosettaSciIO 
package (Prestat et al., 2024b) already offer robust data reading capa-
bilities for a wide array of ET relevant file formats. ETSpy relies on this 
functionality to access image data and the required metadata for several 
formats such as Gatan Digital Micrograph (DM3 or DM4),† HDF5 
(including the Hyperspy specific HSPY derivative), and MRC. When 
loaded, HyperSpy reader functions handle the calibration data and 
ETSpy collects the projection angle data for inclusion with the tilts 
attribute. Additional ETSpy code is included for handling sets of indi-
vidual image series in either DM3/DM4 format or MRC/MDOC pairs 
generated using SerialEM. Finally, if a tilt series already resides in 
memory as a NumPy array or a HyperSpy Signal2D, it can be directly 
converted to a TomoStack in the following way (using random data as an 
example): 

import etspy.api as etspy

import hyperspy.api as hs

import numpy as np

tilts = np.arange(0,180,2)

s = np.random.random([90,100,100])

s = etspy.TomoStack(s, tilts)

s = hs.signals.Signal2D(np.random.random([90,100, 

100]))

s = etspy.TomoStack(s, tilts)

Any TomoStack or RecStack can be saved at any point during data 
processing and analysis. This is done by using the save method and is 
best accomplished using the HyperSpy hspy format which is a custom 
version of the HDF5 standard format. When using the hspy format, the 
data and all of the metadata is stored and easily accessed in the future 
using the etspy.load() method.

5. Basic visualization

Both the TomoStack and RecStack classes inherit the plotting func-
tionality of the HyperSpy Signal2D class. For example, the code 

from etspy import datasets as ds

s = ds.get_catalyst_data()

s.plot()

will load the test catalyst data and plot the first projection image in the 
stack. When used interactively with ipywidgets a slice navigator can be 
used to navigate through the stack in the tilt dimension and update the 
display in real time. By employing the swap_axes() method, navigation 
can also be done over the x-axis which will show the sinogram view. 
Finally, the TomoStack objects can be used as input to all other plotting 
functionality of Hyperspy as well. For example, to compactly plot a 
projection image alongside a sinogram, the following code can be used: 

import hyperspy.api as hs

hs.plot.plot_images([s.inav[0], s.extract_sinogram 

(128)],

colorbar=None)

which produces the output shown in Fig. 2.

6. Pre-processing

Spatial sub-sampling can be performed by slicing the signal axes as 
described in the HyperSpy documentation. In the first line of the code 
shown below, the result will be to remove the first 5 and last 10 columns 
and the first 15 and last 20 rows from the input tilt series: 

s = ds.get_needle_data()

print(s)

<TomoStack, title: , dimensions: (77|256, 256)>

s_cropped = s.isig[5:-10, 10:-5]

print(s_cropped)

<TomoStack, title: , dimensions: (77|241, 241)>

The tilt axis can be similarly sliced using the navigation axis of the 
TomoStack, and the tilts and shifts attributes will be sliced to match: 

# each ofthe following has a navigation size of 77 

pixels:

print(s)

<TomoStack, title: , dimensions: (77|256, 256)>

print(s.tilts)

<TomoTilts, title: Image tilt values, dimensions: 

(77|1)>

print(s.shifts)

<TomoShifts, title: Image shift values, dimensions: 

(77|2)>

s_cropped = s.inav[5: -10]

# afterslicing, each of the following has a navigation 

size of 62 # pixels:

print(s_cropped)

<TomoStack, title: , dimensions: (62|256, 256)>

print(s_cropped.tilts)

<TomoTilts, title: Image tilt values, dimensions: 

(62|1)>

print(s_cropped.shifts)

<TomoShifts, title: Image shift values, dimensions: 

(62|2)>

ETSpy also supports removing projections images from the Tomo-
Stack in a less uniform way. For example, projections may suffer from 
irrecoverable alignment or focus issues or otherwise contain artifacts 
that would degrade the reconstruction quality if included. In that case, a 
dedicated method named remove_projections() for the TomoStack class 
has been provided for removal of poor-quality projections. For example, 
imagine that the tenth projection was severely out of focus while in the 
twentieth projection the sample had drifted too far out of the field of 
view. The stack can be corrected by removing these images in the 
following way: 

print(s)

<TomoStack, title: , dimensions: (77|256, 256)>

s_new = s.remove_projections([10, 20])

print(s_new)

<TomoStack, title: , dimensions: (75|256, 256)>

print(s_new.tilts)

<TomoTilts, title: Image tilt values, dimensions: 

(75|1)>

print(s_new.shifts)

<TomoShifts, title: Image shift values, dimensions: 

(75|2)>

† Certain commercial equipment, instruments, or materials are identified in 
this article to facilitate understanding and provide appropriate context. Such 
identification is not intended to imply recommendation or endorsement by the 
National Institute of Standards and Technology, nor is it intended to imply that 
the materials or equipment identified are necessarily the best available for the 
purpose.
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In both cases, the relevant tilt angles are also removed from the tilts and 
shifts attributes to ensure the relationship between the projection im-
ages and the projection angles/shifts is correct. As a word of caution, 
after using the remove_projections() method, the navigation axis for the 
signal (s_new.axes_manager["Projections"]) will no longer be synchro-
nized with the actual tilt values stored in s_new.tilts, due to the limita-
tions described in Section 3.

Filtering of the stack can also be performed using the filter() method 
of the TomoStack class. Currently, Sobel, median, and band-pass filters 
are implemented along with a combined median and Sobel option. 
Additional filters can be easily added or applied directly to the under-
lying data array of the TomoStack. This can be useful for improving the 
accuracy of the stack alignment methods. Translational shifts can be 
calculated on the filtered stack and applied to the unfiltered stack using 
the align_other() method, as discussed below.

7. Image registration

Multiple options exist for calculating and applying translational 
shifts for aligning the images of the stack using the register_stack() 
method of the TomoStack class. The available options are: 

• Phase correlation ("PC")
• StackReg ("StackReg")
• Center of Mass ("COM")
• Combined center of mass and common line ("COM-CL")

Phase correlation (PC) (Guizar-Sicairos et al., 2008) analysis, a 
normalized form of Fourier cross-correlation, is carried out using the 
scikit-image (Walt et al., 2014) implementation. The StackReg option 
uses the Python implementation (Lichtner, 2023) of an algorithm first 
described by Thévenaz et al. (1998) and originally implemented in 
ImageJ (Thévenaz, 2011). In this method, the transformation is itera-
tively calculated by minimization of a cost function based on the sum 
squared difference of intensities between two images. The COM option 
employs a Python version of a set of algorithms developed by Sanders 
et al. (2015) which were first implemented in Matlab. The method traces 
center of mass of the object at several locations along the tilt axis and 
minimizes the error between the measurements and the path expected 
for such an object over the set of projection angles that were used for 
data collection. Finally, the COM-CL option employs a two-step align-
ment first described by Scott et al. (2012). In this case, shifts are first 
calculated in the direction perpendicular to the tilt axis by center of mass 
tracking. Then, the shifts parallel to the tilt axis are determined via the 
common-line method which involves projecting the image along the 
direction perpendicular to the tilt axis and serially cross-correlating the 

resulting profiles. All of these methods have advantages and disadvan-
tages. PC is straightforward and fast, although it can be challenged by 
noisy data, by samples which exhibit regularly repeating features, or 
when the differences in image features between two images is large (e.g. 
when a large tilt increment is used). StackReg will often outperform PC 
in these cases but is computationally more expensive. Finally, both COM 
and COM-CL incorporate the geometry of the tilt series acquisition and 
are very effective for particulate or pillar shaped samples since little or 
no additional material enters the field of view during tilting in these 
cases. However, they will often fail when slab type specimen geometries 
are used or when significant amounts of extraneous material enters and 
leaves the field of view over the course of the series. Further detail about 
all of these methods can be found in the provided citations.

Regardless of the method chosen, translation shifts are calculated 
between each set of images in the stack. The shifts are then composed 
such that they are made relative to the previous shift in the stack starting 
from a user defined projection number. If the user does not define this 
starting projection number, the midpoint of the stack is used.

Finally, the shifts can be calculated using any of these methods and 
then applied to another stack using the align_other() method. This 
approach is useful when multiple image signals are collected during a 
single tilt series acquisition and when one of the signals has superior 
characteristics for calculating the alignment shifts compared to another. 
For example, shifts can be calculated on a high signal-to-noise ratio 
medium-angle annular dark field (MAADF) image stack and applied to a 
noisier high-angle annular dark field (HAADF) stack. Since both signals 
are acquired simultaneously, the shifts for each will be the same. This 
can also be used to calculate shifts using an image signal collected 
alongside a hyperspectral EDX or EELS dataset and then apply those 
shifts to the spectral images extracted from the datacube (see Section 10
for more detail).

8. Tilt-axis alignment

In order ensure that the tilt axis of the dataset is centered and made 
as close to horizontal as possible prior to reconstruction, a global shift 
and rotation of the stack can also be calculated and applied using the tilt 
align method. Two options are available in this case: 

• Center of mass tracking ("COM")
• Maximum projection image analysis ("MaxImage")

The first of these is based on a method described by Wolf (2012) and 
involves tracking the center of mass at multiple locations along the tilt 
axis and fitting these to the motion expected for an ideal cylinder. This 
method works very well for pillar- or needle-shaped specimen 

Fig. 2. Plotting functionality of the TomoStack class shown for the simulated catalyst tilt series. The central projection (left) is shown alongside the central sinogram 
slice (right).
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geometries. Alternatively, the MaxImage method analyzes features in 
the projected maximum image of a spatially registered stack using a 
combination of edge-detection and Hough transform analysis in order to 
determine the tilt axis rotation. This method is particularly effective 
when particles are present in the sample which trace linear paths in the 
projected maximum image. Optionally, the global shift of the tilt axis 
can also be calculated by minimization of the sum of the reconstruction. 
In both cases, the measured shift and rotation are stored in the To-
mography node of the metadata structure and can be applied to other 
stacks using the align_other() method described in the previous section.

An example of the full, automated alignment process is illustrated in 
Fig. 3 which shows the maximum projection images from the simulated 
catalyst tilt series prior to alignment, after stack registration via 
"StackReg" and after a tilt axis alignment via the "MaxImage" method. 
The reconstruction at each stage is also shown with varying artifacts due 
to misalignment.

Finally, where the automated approaches fail for a particular dataset, 
a manual approach is also available. This is done using the test_align() 
method which displays three reconstructed sinograms extracted from 
user-defined locations in the stack. If the user does not define these lo-
cations, positions at one quarter, one half, and three quarters of the stack 
width are chosen. By visual inspection of the features in these re-
constructions, it is often possible to iteratively determine the best shift 
and tilt and tilt values by altering one or both parameters and re- 
executing test_align() multiple times.

9. Reconstruction

There are four reconstruction algorithms currently available in 
ETSpy and each relies on the ASTRA toolbox (Aarle et al., 2015) to 
perform the reconstruction. The available options are: 

• Simple backprojection ("BP")
• Filtered backprojection ("FBP", default)
• Simultaneous iterative reconstruction technique ("SIRT")
• Simultaneous algebraic reconstruction technique ("SART")
• Discrete algebraic reconstruction technique ("DART")

Reconstruction is initiated by calling the reconstruct() method of the 
TomoStack. The ASTRA toolbox offers CPU-based and CUDA-based 
GPU-accelerated options for the BP, FBP, SIRT, and SART methods. 
ETSpy will attempt to determine whether a CUDA-compatible GPU is 
available and use it for faster reconstruction when possible. Alterna-
tively, the reconstruction will be carried out using parallel computation 
on the CPU using the Python multiprocessing package. The DART 
implementation employed in ETSpy is based on custom Python code and 
no CUDA-acceleration is available at the present time. The reconstruc-
tion returns a RecStack object which contains the 3D reconstructed 
image data.

For the iterative SIRT and SART reconstruction methods, another 
function (recon_error()) is provided to perform a reconstruction on a 
single slice of the tilt series data and return a series of reconstructions 
showing the progress at each iteration along with a measure of the error 
at each step. This can be useful in determining the number of iterations 
to perform on the entire stack. Once completed, the resulting stack can 
be interactively plotted to see how the reconstructed image changes 
with iteration. The error is returned as a HyperSpy Signal2D array which 
can be interrogated numerically or graphically. For CUDA-capable sys-
tems, ASTRA offers a way to do this directly using astra.algorithm. 
get_res_norm(). For systems without CUDA, ETSpy will use the numpy. 
linalg.norm() function to calculate the error between the sinogram and 
the reconstruction at each iteration. An example of this process is shown 
in Fig. 4.

Fig. 3. Alignment results. Maximum projection images of the tilt series (top series) are shown for the misaligned stack, the registered stack, and the fully aligned 
stack along with the resulting reconstructions (SIRT, 100 iterations) from each (bottom row).
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10. Hyperspectral tomography

To demonstrate the use of ETSpy for processing hyperspectral to-
mography, data was collected from another needle-shaped sample of the 
NIST SRM-2135c depth-profiling standard. Several EDX spectrum im-
ages (SIs) were collected every 5◦ over a 180◦ tilt range using an on-axis 
style tomography holder (Fischione Model 2050). The data were 
collected using an EDAX Octane-T silicon drift detector and the acqui-
sition was controlled by the EDAX TEAM software. The SIs were 162 x 
128 pixels in size with 3 nm square pixels. The probe current was 
approximately 0.5 nA and the per pixel dwell time was 200 ms. At each 
new tilt, the sample was manually aligned to an image at the previous 
tilt using a combination of beam and stage shifting. The sum spectrum 
for the entire spectral tomography dataset is shown along with the sum 
image calculated from a single projection angle in Fig. 5.

Once acquired, the TEAM SPD files were converted to HDF5 format 
using HyperSpy. All that remains to utilize ETSpy for reconstructing the 
chemical maps is to extract the required 2D elemental maps at each tilt 
and converting each of the resulting HyperSpy Signal2D instances to a 
TomoStack. Using HyperSpy, this can be done either via straightforward 
background subtraction methods, curve fitting, or via machine learning 
algorithms. Examples of background subtraction and the non-negative 
matrix factorization (NMF) machine learning algorithm (Paatero and 
Tapper, 1994) are shown in the following code: 

import hyperspy.api as hs

import etspy.api as etspy

# Load EDX datasets and define tilts

edx = hs.load("EDX_SI_*.hdf5", reader="HSPY", 

stack=True)

tilts = np.linspace(0, 180, 37)

## Background Subtraction Method

# Define lines to use and background windows

lines = ["Si_Ka", "Ni_Ka", "Cr_Ka","Pt_La"]

bckg = [[1.2,1.4,3.2,3.4],[4.5,4.8,11.9,12.5], 

[4.5,4.8,11.9,12.5],[4.5,4.8,11.9,12.5]]

# Extract elemental maps

maps = edx.get_lines_intensity(lines,

background_windows=bckg)

SiKa, NiKa, CrKa, PtLa = maps

# Convert maps to TomoStack

SiKa = etspy.TomoStack(SiKa, tilts)

NiKa = etspy.TomoStack(NiKa, tilts)

CrKa = etspy.TomoStack(CrKa, tilts)

PtLa = etspy.TomoStack(PtLa, tilts)

## NMF decomposition

# Perform initial singular value decomposition

edx.decomposition(True)

# Refine the decomposition using NMF

edx.decomposition(True, 

algorithm="nmf", 

output_dimension=6)

# Extract phase maps and convert to TomoStacks

loadings = edx.get_decomposition_loadings()

Ni_NMF = etspy.TomoStack(loadings.inav[0], tilts)

Si_NMF = etspy.TomoStack(loadings.inav[1], tilts)

Cr_NMF = etspy.TomoStack(loadings.inav[2], tilts)

Pt_NMF = etspy.TomoStack(loadings.inav[3], tilts)

Once the TomoStack’s have been created using either method, it is 
then just a matter of following the usual tomographic workflow of stack 
registration, tilt-axis alignment and reconstruction. Since the elemental 

Fig. 4. Iterative reconstruction convergence analysis. Reconstructed slice from the simulated catalyst tilt series shown after an increasing number of SIRT iterations 
(top row). Also shown is the L2-norm of the difference between the reconstruction and the input projection data (log scale) as a function of SIRT iteration (bottom).
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maps are often not well suited for calculating alignment trans-
formations, we can either use a tilt series of an image signal collected 
simultaneously (e.g. HAADF, etc.) or by the spectral sum images for 
alignment followed by using the align_other() method of the TomoStack 
to apply the calculated alignment to each spectral tilt series. The latter 
option using the spectral sum image is shown below: 

## Calculate alignment on the spectral sum image series

# Calculate sum image. This results in a HyperSpy

# Signal2D class:

edx_sum = edx.sum(3).as_signal2D((0,1))

# Convert to a TomoStack

edx_sum = etspy.TomoStack(si_sum, tilts)

edx_reg = edx_sum.stack_register("StackReg")

edx_ali = edx_reg.tilt_align("CoM")

# Apply alignments to the phase maps

Ni_NMF = edx_ali.align_other(Ni_NMF)

Si_NMF = edx_ali.align_other(Si_NMF)

Cr_NMF = edx_ali.align_other(Cr_NMF)

Pt_NMF = edx_ali.align_other(Pt_NMF)

# Reconstruct the datasets

Ni_rec = Ni_NMF.reconstruct()

Si_rec = Si_NMF.reconstruct()

Cr_rec = Cr_NMF.reconstruct()

Pt_rec = Pt_NMF.reconstruct()

The component images produced by the NMF decomposition for one 
projection of the full hyperspectral tomography dataset are shown in 
Fig. 6. In this case, the first four components show the spatial distribu-
tion of the nickel, silicon, chromium, and platinum signals, respectively. 
Components five and six (not shown), were related to the absorption of 
the nickel and chromium L-lines.

Since the data underlying these images was collected simultaneously 
with that which is used to generate the sum images described previously, 
the alignments calculated in the latter case can also be applied here. 
Finally, the individual NMF image series are reconstructed indepen-
dently and slices from each are displayed in Fig. 7.

At this point, the reconstructions can be quantified using packages 
Fig. 5. Sum spectrum of the fully spectral tomography dataset (top) and sum 
image extracted from a single spectrum image projection (bottom).

Fig. 6. Results of NMF decomposition of spectral tomography dataset. Components 1 through 4 are shown along with a color overlay emphasizing their 
spatial extent.
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such as NumPy, SciPy, scikit-image, etc., all of which can be accessed 
directly from the same Jupyter Notebook used for ETSpy processing. For 
example, it is very straightforward to binarize the reconstructions of the 
nickel and chromium layers and calculate volumetric ratios of each: 

pixel_size =Ni_rec.axes_manager[0].scale

Ni_binary =Ni_rec.deepcopy()

Ni_binary[Ni_binary>0] = 1

Cr_binary =Cr_rec.deepcopy()

Cr_binary[Cr_binary>0] = 1

Ni_volume = pixel_size**3 * Ni_binary.sum()
Cr_volume = pixel_size**3 * Cr_binary.sum()
volume_ratio = Ni_volume/Cr_volume

This is just one simple example to illustrate the way in which 
tomographic reconstructions generated using ETSpy can be directly 
interrogated within the Jupyter environment.

Finally, 3D visualization can be carried out in one of two ways. First, 

the reconstructions can be saved to disk and then read into dedicated 
visualization software. Alternatively, for those who wish to remain in 
the Python environment used for the rest of the data processing, pack-
ages such as ipyvolume or mayavi can be used from some basic visual-
ization. An example of using ipyvolume is shown in Fig. 8.

11. Conclusions

In this paper, we have described the ETSpy software package, a new 
Hyperspy extension that is specifically tailored to enhance the process-
ing and reconstruction of electron tomography data. The package pro-
vides a comprehensive suite of tools designed to streamline the 
workflow from data input to final reconstruction.

The package leverages the already powerful capabilities of its parent 
package and adds a host of application specific functionality for electron 
tomography data. This includes data pre-processing, image registration, 
tilt axis alignment, 3D reconstruction, and basic visualization. Since it is 
Python-based, the package is easily scriptable and when used within the 

Fig. 7. Slices extracted from reconstructions of the NMF components associated with nickel (top), chromium (middle), and silicon (bottom).
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Jupyter Lab interface can be thoroughly documented and easily shared. 
The combination of HyperSpy’s core functionality with the new capa-
bilities of ETSpy is most apparent in the processing of hyperspectral 
tomography datasets since initial tasks such as background subtraction 
and machine learning decomposition are seamlessly integrated with 
tomographic alignment and reconstruction.
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Appendix A. Code and Data Availability

The ETSpy package is hosted on GitHub under the usnistgov orga-
nization: https://github.com/usnistgov/ETSpy and can be cited using 
the following DOI: https://doi.org/10.18434/mds2-3616. Extensive 
documentation is available at the project’s homepage: https://pages. 
nist.gov/etspy.

In addition to the code itself, a Jupyter notebook is provided to 
demonstrate the basic functionality described in this paper, which 
should be available at https://pages.nist.gov/etspy/examples/etspy_de 
mo.html (in the event that link changes, it is also available from the 
GitHub repository).

The EDX tomography dataset can be accessed at: https://doi. 
org/10.18434/mds2–3631.

Appendix B. Package Installation

Due to the integration of compiled and GPU-accelerated features, 
installation is most easily accomplished by using Anaconda (Anaconda 
Software Distribution, 2024) to create a new environment and to install 
the package from the conda-forge repository: 

conda create -n etspy

conda activate etspy

conda install -c conda-forge etspy

Data availability

Data will be made available on request.
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Lähnemann, J., Orri, J.F., Prestat, E., Ånes, H.W., Johnstone, D.N., Migrator, L.G.T.M., 
Tappy, N., 2023. LumiSpy/lumispy: V0.2.2. Zenodo. doi:10.5281/zenodo.7747350.

Lichtner, G., 2023. Pystackreg github repository. URL: 〈https://github〉. 〈com/glichtn 
er/pystackreg〉.
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